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bstract

Cell temperature control plays a crucial role in SOFC operation. In order to design effective temperature control strategies by model-based control
ethods, a dynamic temperature model of an SOFC is presented in this paper using least squares support vector machines (LS-SVMs). The nonlinear

emperature dynamics of the SOFC is represented by a nonlinear autoregressive with exogenous inputs (NARXs) model that is implemented using
n LS-SVM regression model. Issues concerning the development of the LS-SVM temperature model are discussed in detail, including variable
election, training set construction and tuning of the LS-SVM parameters (usually referred to as hyperparameters). Comprehensive validation tests
emonstrate that the developed LS-SVM model is sufficiently accurate to be used independently from the SOFC process, emulating its temperature
esponse from the only process input information over a relatively wide operating range. The powerful ability of the LS-SVM temperature model
enefits from the approaches of constructing the training set and tuning hyperparameters automatically by the genetic algorithm (GA), besides the

odeling method itself. The proposed LS-SVM temperature model can be conveniently employed to design temperature control strategies of the
OFC.
2008 Elsevier B.V. All rights reserved.

eywords: Solid oxide fuel cell (SOFC); Dynamic temperature model; Least squares support vector machine (LS-SVM); Hyperparameter tuning; Genetic algorithm
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. Introduction

The solid oxide fuel cell (SOFC) is expected to be one of
he most promising devices for energy conversion because of
ts high efficiency, low pollutant emissions and flexible fueling
trategies. Possible applications of SOFCs range from vehicular
uxiliary power units to stationary power plants [1]. Cell temper-
ture control plays a crucial role in SOFC operation [2,3]. This is
ecause the cell temperature has a significant effect on the elec-
rical characteristics of an SOFC, e.g. the cell voltage and the
urrent density distribution. Moreover, the variation of cell tem-

erature may cause degradation, even damage to the fuel cell due
o thermal fatigue or thermal cracking of the cell material. Thus,
he average cell temperature should be carefully controlled. In
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rder to design effective temperature control strategies by using
odel-based control methods, simple and accurate dynamic

emperature models of SOFCs are highly desired.
In recent years, many dynamic physical models of SOFCs

ased on conservation laws and electrochemical principles have
een reported [3–6]. Although these models are useful for the
nalysis and optimization of SOFCs, in general they are too
omplex for applying model-based control methods. The com-
licated phenomena associated with SOFCs easily drive such
odels to high complexity [7]. Developing simpler data-driven
odels based on the system identification methodology is an

mportant way to control complex plants [8,9]. Following this
ine, many data-driven modeling approaches, such as classi-
al system identification, artificial neural networks (ANNs) and

uzzy logic, can be applied to dynamic temperature modeling
f SOFCs. The requirements for developing such data-driven
emperature models of SOFCs for control purpose can be sum-

arized as:

mailto:yingwei.kang@gmail.com
dx.doi.org/10.1016/j.jpowsour.2008.01.022
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Nomenclature

A cell active area (m2)
Ar reforming reaction surface area (m2)
Ash anode section area (m2)
AR air ratio
b bias term
b0–b3 fitting function coefficients of specific heat capac-

ity
cp specific heat capacity of gas species

(J mol−1 K−1)
Cs

p specific heat capacity of solid part (J kg−1 K−1)
ek prediction error of the kth data point
Ea activation energy (J mol−1)
F Faraday’s constant (=96,485 C mol−1)
hi molar enthalpy (J mol−1)
�H total change of molar enthalpy for chemical reac-

tion (J mol−1)
J average current density (A m−2)
kp coefficient for unit conversion (=105 Pa bar−1)
kr reforming reaction constant

(=4274 mol s−1 m−2 bar−1)
ksh WGS reaction constant (=1.2 × 104 mol m−3 s−1)
K kernel function
Ksh equilibrium constant of WGS reaction
Ms mass of solid part (kg)
ne number of transferred electrons
ni molar number of species i within SOFC (mol)
ny, nd, nu maximum lags
N molar flow rate (mol s−1), number of data points
p pressure (bar)
Pdc direct current electric power (W)
rj rate of reaction j (mol s−1)
R universal gas constant (=8.314 J mol−1 K−1)
Rohm total cell resistance (� m2)
T temperature (K)
T0 initial temperature (K)
U voltage (V)
Uf fuel utilization
V volume (m3)
w feature vector
x input vector
xi molar fraction of species i
y output value

Greek symbols
αk Lagrange multiplier
βan, βca pre-exponential factors of anode and cathode

(A m−2)
η overpotential (V)
ϕ nonlinear mapping
γ regularization parameter
σ kernel parameter
σan, σca, σelec electrical conductivity of anode, cathode

and electrolyte (�−1 m−1)
τ thickness (m)

ξ number of chemical reactions
ζ number of gases

Subscripts
act activation
an anode
ca cathode
conc concentration
elec electrolyte
i gas species i
j the jth reaction
k sampling instant k, the kth data point
ohm ohmic
r steam reforming reaction
sh water–gas shift reaction

Superscripts
in fuel cell inlet
out fuel cell outlet
ref reference condition

(
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s solid part (including the PEN and interconnect)

1) The model should be able to represent the temperature
dynamics of an SOFC accurately over a relatively wide
operating range, certainly including the design point.

2) The model can be conveniently integrated into the whole
control scheme of an SOFC.

3) The model’s performance should be fully tested over the
expected operating range.

4) The modeling process should be as simple as possible.

Compared with the substantial progress on physical model-
ng, however, data-driven dynamic temperature models of fuel
ells (particularly of SOFCs), which meet all above require-
ents, are still rare.
Shen et al. [10] presented an application of radial basis func-

ions (RBFs) neural networks to develop a dynamic temperature
odel of a molten carbonate fuel cell (MCFC) stack. Although

atisfactory degree of precision is obtained, the MCFC RBF-NN
odel has several weaknesses. First, the topology and train-

ng strategy of RBF-NNs are determined by experience, which
eakens the model’s objectivity. Second, RBF-NNs get easily

tuck in local extrema. Third, the effect of load disturbance on
ell temperature was left out of consideration, which impairs the
odel’s generality. Jurado [11,12] used different Hammerstein
odels to represent the dynamic characteristics of an SOFC.
s the Hammerstein model, which uses a static nonlinear block

ollowed by a dynamic linear block to represent nonlinear sys-
ems, is a special type of nonlinear model, these SOFC models
till need more tests over a wide operating range. Yang et al.

13] reported a dynamic T–S fuzzy model of a MCFC, which
onsists of a voltage and a temperature submodel. However, the
emperature submodel can only be valid within a relatively nar-
ow temperature range. In addition, the identification procedure
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Fig. 1. Schematic diagram of SOFC process.

Table 1
Definitions of fuel utilization and air ratio

Fuel utilization Uf = JA/2F

(4xin
CH4

+ xin
H2

+ xin
CO)N in

fuel
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3
SOFC using LS-SVMs

In this section, the LS-SVM regression method is first
Y.-W. Kang et al. / Journal of P

f the T–S model, which contains an antecedent identification
nd a consequent identification, is complicated.

As an important breakthrough in the area of machine learn-
ng in the last decade, the support vector machine (SVM) has
roven to be a powerful tool for solving classification and regres-
ion problems. However, the training of SVM needs to solve a
uadratic programming (QP) problem, which is time-consuming
n the case of large data set. The least squares support vector

achine (LS-SVM), which achieves the solution by solving a
et of linear equations, is a least squares version of standard
VM [14]. Compared with SVM, it can significantly reduce the

raining time at the price of just a small precision loss [14]. More-
ver, it maintains SVM’s advantages of superior generalization
bility and finding global solution. In recent years, the LS-SVM
ethod has aroused interests of many researchers [15–17], and

as already been used to model the static voltage characteristics
f an SOFC [18].

In this paper, a dynamic temperature model of an SOFC,
hich aims to satisfy all the above modeling requirements, is
uilt using the LS-SVM regression method. The nonlinear tem-
erature dynamics of the SOFC is represented by a nonlinear
utoregressive with exogenous inputs (NARXs) model [9] that
s implemented using an LS-SVM regression model. In this
tudy, the training data is generated with a physical model of
n SOFC. A training set covering the entire expected operating
ange is constructed. To improve the resulting model’s general-
zation ability, an innovative optimization algorithm known as
he genetic algorithm (GA) [19,20] are adopted to automatically
une two parameters in LS-SVM design (usually referred to as
yperparameters). In addition, the LS-SVM temperature model
s fully tested over the operating range by comparison with the
hysical model.

The rest of this paper is organized as follows. In Section 2, the
OFC process is briefly described. In Section 3, the development
f the dynamic temperature model using LS-SVMs is presented
n detail. Modeling results and model validation are presented
n Section 4. Finally, conclusions are drawn in Section 5.

. Description of SOFC process

The SOFC can be viewed as a electrochemical reactor oper-
ting at very high temperatures (600–1000 ◦C), which produces
lectricity and heat directly from the electrochemical combina-
ion of a gaseous fuel (hydrogen or hydrocarbons, e.g. methane)
ith an oxidant (typically air). An SOFC consists of an intercon-
ect structure and a tri-layer structure composed of two porous
eramic electrodes, anode and cathode, separated by a dense
eramic electrolyte (often referred to as the PEN). The operat-
ng principle of an SOFC process may be described in Fig. 1.
uel and air are fed into the anode and cathode channels, respec-

ively. At the cathode, oxygen is consumed to form oxygen ions
y obtaining electrons. The oxygen ions migrate through the
on-conducting electrolyte to the anode where they combine

ith hydrogen, producing water vapor and releasing electrons

o the external circuit. The released electrons are transferred to
he cathode via an external load, where they perform electrical
ork. The electrochemical reactions for the anode and cathode

d
d
v
t

ir ratio AR =
xO2

Nair

JA/4F

an be described as:

node : H2 + O2− → H2O + 2e−, (1a)

athode : 1
2 O2 + 2e− → O2−. (1b)

or a direct internal reforming SOFC (DIR-SOFC) that operates
n methane, the internal reforming process also takes place in the
node channel to produce hydrogen, and is usually represented
y the following steam reforming reaction and water–gas shift
WGS) reaction:

team reforming : CH4 + H2O → CO + 3H2, (2)

GS : CO + H2O ↔ CO2 + H2. (3)

The cell voltage is related to the concentration of electro-
hemical species by the well-known Nernst equation. In order
o provide a voltage greater than zero, not all the reactants in
he cell can be consumed [21]. Thus, fuel and air in excess
f the required amount of electrochemical reactions should be
elivered. In addition, since the electrochemical combination of
ydrogen and oxygen is a highly exothermic reaction, excess
ir is also needed for cell cooling. Two performance factors, i.e.
uel utilization and air ratio (see Table 1) are usually used to
efine the amount of utilized fuel and excess air, respectively.

. Development of the dynamic temperature model of
escribed. Then issues concerning the development of the
ynamic temperature model are discussed in detail, including
ariable selection, training set construction and hyperparameter
uning.
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can be controlled by varying the air ratio, i.e. the supply of air
for cooling. F1 and F2 in Fig. 2 are static mappings, which can
be obtained from the definitions of fuel utilization and air ratio,
86 Y.-W. Kang et al. / Journal of P

.1. LS-SVM for regression

The nonlinear modeling problem based on measurable data
ssentially is a nonlinear regression problem. The LS-SVM
egression model [14,22] employs the following linear represen-
ation in a so-called higher dimensional feature space H ⊆ Rnh :

(x) = wTϕ(x) + b, (4)

here x ∈ Rn is an input vector, y ∈ R is an output value, w ∈ H

s a feature vector. ϕ(·) : Rn → Rnh is a nonlinear mapping from
he input space to the feature space, by which a nonlinear regres-
ion in the input space is converted to a linear regression in the
eature space.

Given a training set {xk, yk}Nk=1, the LS-SVM method con-
iders the regression problem as the following optimization
roblem:

min
,b,e

J(w, e) = 1

2
wTw + γ

2

N∑
k=1

e2
k (5)

ubject to equality constraints

k = wTϕ(xk) + b + ek, k = 1, . . . , N, (6)

here γ is the regularization parameter, ek is the prediction error
or data point k.

By applying the Lagrangian multiplier method, the solution
o above optimization problem is obtained as the following linear
quations:

0 1T

1 Ω + γ−1I

][
b

α

]
=
[

0

y

]
(7)

here α = [α1, . . ., αN]T is the Lagrange multiplier vector,
= [y1, . . ., yN]T, 1 = [1, . . ., 1]T ∈ RN, and � is an N × N
ernel matrix. By using the kernel trick [22], one obtains
kl = ϕ(xk)Tϕ(xl) = K(xk, xl), k, l = 1, . . ., N. And the resulting
S-SVM regression model becomes

(x) =
N∑

k=1

αkK(x, xk) + b, (8)

here αk, b are the solution to Eq. (7).
Note that the dot product ϕ(·)Tϕ(·) in the feature space is

eplaced by a prechosen kernel function K(·, ·) due to the employ-
ent of the kernel trick. Thus, there is no need to construct the

eature vector w or to know the nonlinear mapping ϕ(·) explic-
tly. Given a training set, the training of an LS-SVM is equal to
olving a set of linear equations as Eq. (7). This greatly simplifies
he regression problem.

The chosen kernel function must satisfy the Mercer’s condi-
ion. The linear, polynomial and radial basis functions kernel are
he commonly used kernel functions. In this paper, the popular

BF kernel is used and this is of the form

(x, xk) = exp

(
−||x − xk||2

σ2

)
. (9)
Sources 179 (2008) 683–692

.2. Variable selection of the dynamic temperature model

In order that the resulting dynamic temperature model can be
ntegrated into the whole control scheme of an SOFC, its vari-
bles should be selected first according to the employed control
cheme.

The aim of controlling an SOFC is to deliver specified electric
ower to the load and avoid any operating conditions that may
ause degradation or damage to the fuel cell. Due to the limi-
ations of components’ mechanical properties and the intrinsic
ature of establishing the cell voltage mentioned above, the aver-
ge cell temperature and the supply of fuel and air are the two
ost important aspects that should be controlled. As the average

ell temperature cannot be measured conveniently, in practice a
easurable variable, i.e. the outlet fuel temperature is controlled

nstead [2,3]. The supply of fuel and air can be reflected by the
uel utilization and air ratio, respectively. Hence the common
ontrol objectives of an SOFC include: maintaining the fuel uti-
ization as constant as possible; ensuring the air ratio in a certain
ange; guaranteeing the outlet fuel temperature as constant as
ossible [2].

These control objectives can be achieved using the control
cheme illustrated in Fig. 2. Since the average current density
s decided by uncontrollable load, it is taken as a disturbance
ariable in the control scheme. Fuel and air flow rates are two
asic operating degrees of freedom. By measuring the average
urrent density as a feedforward signal, the fuel flow rate cal-
ulated according to the definition of fuel utilization can keep
he fuel utilization constant. Further, the outlet fuel temperature
Fig. 2. Control scheme of SOFC.
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espectively,

in
fuel = F1(J) = A/2F

(4xin
CH4

+ xin
H2

+ xin
CO)Uf

J, (10)

in
air = F2(J, AR) = A/4F

xin
O2

J · AR, (11)

here Uf is the operating fuel utilization. To meet the remaining
ontrol objective, what’s needed is just to keep the air ratio in a
ertain range. Therefore, the air ratio is taken as a manipulated
ariable and the outlet fuel temperature as a controlled variable
n the control scheme. Correspondingly in our dynamic temper-
ture model, the average current density and the air ratio are
wo input variables, and the outlet fuel temperature is an output
ariable. The inlet gas temperature and composition herein are
ssumed to be fixed.

As the NARX model is a general model structure suitable
or representing a wide class of nonlinear dynamic systems, it
s used to describe the nonlinear temperature dynamics of an
OFC in this study. The dynamic temperature model thereby
an be written as:

k = f (Tk−1, . . . , Tk−ny , Jk−1, . . . , Jk−nd
, ARk−1, . . . ,

ARk−nu ), (12)

here Tk, Jk, and ARk represent the outlet fuel temperature, the
verage current density and the air ratio at sampling instant k,
espectively, ny, nd and nu are the maximum lags of T, J and AR,
espectively, which are determined by the specific process data,
(·) is an unknown nonlinear mapping. Let yk = Tk and xk =
Tk−1, . . . , Tk−ny , Jk−1, . . . , Jk−nd

, ARk−1, . . . , ARk−nu ]T.
hus, the dynamic temperature modeling problem could be
tated as: build an LS-SVM regression model in the form of
q. (8) based on a training set {xk, yk}Nk=1 to approximate the
onlinear mapping f(·).

.3. Construction of training data set

Constructing a training set containing sufficient representa-
ive data points is an important step in building an LS-SVM

odel that can represent SOFC’s temperature dynamics over
relatively wide operating range. The basic guideline on con-

tructing a training set is that the data in it should cover the entire
xpected operating range of the LS-SVM model. As analyzed
n Section 3.2, the dynamic temperature model has two input
ariables J, AR and one output variable T. Hence the expected
perating ranges of all the three variables should be covered.

In this study, the training data is generated with a physical
OFC model (see Appendix A). A scheme consisting of a set
f operating cases is designed to collect training data by the
hysical model (refer to Section 4.1). Each operating case is
etermined by three parameters: J, AR and the initial tempera-
ure T0. Several levels of J and AR, which distribute uniformly

ver their respective operating ranges, are selected, and each
evel of J and AR should be included in the scheme. Moreover,
he T0 of each case should ensure that its corresponding temper-
ture dynamic process can cover the expected operating range

s
r
t
t

Sources 179 (2008) 683–692 687

f T as widely as possible. Thus, the lower or upper bound of
he expected operating range of T is usually selected as T0. After
esampled, the dynamic data of these operating cases can be used
o construct the training set. To reduce the amount of training
ata, at first only the data of part of these cases are added to the
raining set. Then, the data of other cases are added gradually
ntil satisfactory modeling results are achieved. This approach
uarantees that the training set can contain enough representative
ata points in a relatively small size.

.4. Tuning hyperparameters automatically by GA

With the RBF kernel chosen a priori, there are two parameters
hat need to be tuned, i.e. the regularization parameterγ in Eq. (5)
nd the kernel parameter σ2 in Eq. (9). The two parameters are
sually referred to as hyperparameters. Choosing an optimal set
f hyperparameters is also an important step in LS-SVM design.
he aim of tuning the hyperparameters is to make the LS-SVM
odel achieve better generalization ability (i.e. the ability to cor-

ectly predict samples that are not contained in the training set),
hich is usually evaluated using an estimated generalization

rror [23]. Consequently, the problem of hyperparameter tuning
s equal to looking for a set of hyperparameters in the search
pace that can minimize the estimated generalization error. In
his paper, the genetic algorithm is employed to implement the
ask of optima searching. The simplicity and high efficiency of
A can help to accurately find the optimal hyperparameters in
relatively low time cost.

GA is a form of evolutionary algorithm, which is invented by
ohn Holland and has achieved notable success on various hard
ptimization problems [19,20]. The basic idea of GA originates
rom the mechanisms of evolution and the principle of natu-
al selection in nature. GA starts with an initial set of random
olutions called population. Each individual in the population
epresents a feasible solution to the problem at hand. The popula-
ion “evolves” through successive iterations, called generations.
t each generation, the individuals are evaluated using some
easures of fitness, and a series of genetic operations including

election, crossover and mutation are imposed upon individuals
n the current population to create the next generation. After
everal generations, the algorithm may converge to the best
ndividual, which hopefully represents the optimal solution to
he problem. During the implementation of GA, what’s needed
s just the information of fitness. This is a prominent differ-
nce between GA and classical, derivative-based, optimization
lgorithms.

For the problem of hyperparameter tuning by GA, each set
f γ and σ2 is taken as an individual in a population, and the
stimated generalization error as the fitness. As the k-fold cross-
alidation is a very reliable method to estimate the generalization
rror [23], it is employed in this paper. In k-fold cross-validation,
he training data is randomly split into k roughly equal sub-
ets. An LS-SVM decision rule is trained using (k − 1) of these

ubsets and validated on the subset left out. This procedure is
epeated k times with each of the k subsets used as the valida-
ion subset in turn. Averaging the validation errors over the k
rials gives an estimate of the generalization error. The flow-
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Table 2
Parameters and assumed operating conditions of the SOFC

Cell parameters [24–26]
Cell number 1
Cell active area (m2) 0.1 × 0.1
Anode thickness (m) 5 × 10−5

Cathode thickness (m) 5 × 10−5

Electrolyte thickness (m) 1.5 × 10−4

Anode volume (m3) 5.4 × 10−6

Cathode volume (m3) 5.4 × 10−6

Mass (kg) 0.2668
Density (kg m−3) 6600
Heat capacity (J kg−1 K−1) 400
Anode electrical conductivity (�−1 m−1) (9.5 × 107/T) exp(−1150/T)
Cathode electrical conductivity (�−1 m−1) (4.2 × 107/T) exp(−1200/T)
Electrolyte electrical conductivity (�−1 m−1) 3.34 × 104 exp(−10,300/T)
Limiting current density (A m−2) 8000
Activation energy of anode (J mol−1) 1 × 105

Activation energy of cathode (J mol−1) 1.17 × 105

Pre-exponential factor of anode (A m−2) 5.5 × 108

Pre-exponential factor of cathode (A m−2) 7.0 × 108

Assumed operating conditions
Average current density (A m−2) 3000
Fuel utilization 0.85
Air ratio 7
Operating pressure (bar) 1
Inlet gas temperature (K) 1123

Inlet gas composition Fuel: H2, 0.2626; CH4,
0.171; H2O, 0.4924; CO,
0.0194; CO2, 0.0436
Air: O2, 0.21; N2, 0.79

a
1
i

1
a
G
a
(
5
t
using the optimal hyperparameter values.

Table 3
Operating cases for constructing the training set

Case J (A m−2) AR T0 (K) Case J (A m−2) AR T0 (K)

1 2000 5 1247 9 3000 5 1247
2 2000 6 1247 10 3000 6 1247
3 2000 7 1247 11 3000 7 1247
4 2000 8 1247 12 3000 8 1247
Fig. 3. Flowsheet of hyperparameter tuning.

heet of tuning the hyperparameters by GA is illustrated in
ig. 3.

. Modeling results and model validation

.1. Modeling results

A planar SOFC in a co-flow configuration is adopted in our
odeling. This is a single square electrolyte-supported SOFC

perating with direct internal steam reforming of methane and
ir. The parameters and design operating conditions of the SOFC
re listed in Table 2. The expected operating ranges of the LS-
VM temperature model are J ∈ [2000, 3500] A m−2, AR ∈ [5,
] and T ∈ [1247, 1347] K, which include the design point of
he SOFC. To collect training data, four levels of J and AR
re selected, respectively, and a scheme containing 16 operating
ases is designed (see Table 3, the cases that are not used have

een omitted). By solving the physical model using the fourth-
rder Runge–Kutta method [27], the input and output data of
he 16 cases are collected and then resampled using a sampling
nterval of 220 s. The maximum lags ny, nd and nu in Eq. (12)

5
6
7
8

re determined by a trial method, and herein [ny, nd, nu]T = [1, 1,
]T is employed. Finally the training set {xk, yk}960

k=1 ⊂ R3 × R

s obtained.
The two-dimensional search space of γ and σ2 is [1,

04] × [0.1, 103]. The population size and the maximum gener-
tion number are set to 15 and 25, respectively. By the proposed
A-based tuning method with the 5-fold cross-validation error

s fitness, it takes 7.42 h to find the optimal set of (γ , σ2) at
8709, 33.01) on an AMD SempronTM 1.6 GHz computer with
12 MB RAM. The best and mean fitness values in each genera-
ion are illustrated in Fig. 4. Then an LS-SVM model is obtained
2500 5 1247 13 3500 5 1247
2500 6 1247 14 3500 6 1247
2500 7 1247 15 3500 7 1247
2500 8 1247 16 3500 8 1247
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Fig. 4. Best and mean fitness values in each generation.

.2. Model validation

First it is necessary to note that there are two different
odes of operation of a trained LS-SVM NARX model: the

eries–parallel mode and the parallel mode [28]. Eq. (12) repre-
ents the series–parallel mode. The LS-SVM model operating in
his mode requires both input and output data from the process
s inputs and can predict the process output only one time step
nto the future. On the other hand, the LS-SVM model operating
n the parallel mode has the following form:

ˆ
k = f (T̂k−1, . . . , T̂k−ny , Jk−1, . . . , Jk−nd

, ARk−1, . . . ,

ARk−nu ), (13)

here the output of the LS-SVM model T̂k is delayed and fed
ack to the model inputs to predict the process output further

nto the future. In this parallel mode, the LS-SVM model can
e used independently from the process and provide long range
redictions from only process input information. Obviously an
S-SVM model that can operate accurately in the parallel mode

p
L
i
d

able 4
alidation cases and associated MSEs

Case J (A m−2) AR T0 (K)

alidation A

A1 3300 6.5 1247
A2 2800 6.5 1247
A3 2300 6.6 1247
A4 3300 6.5 1347
A5 2800 6.5 1347
A6 2300 6.5 1347
A7 3300 7.5 1247
A8 2800 7.5 1247
A9 2300 7.5 1247
A10 3300 7.5 1347
A11 2800 7.5 1347
A12 2300 7.5 1347

Case Input signal description

alidation B
B1 Step input of AR with fixed J = 3000 A m−
B2 Step input of J with fixed AR = 7
Sources 179 (2008) 683–692 689

s a more powerful tool for designing control strategies than that
an operate accurately only in the series–parallel mode. How-
ver, the parallel mode has higher requirements for the prediction
ccuracy of the LS-SVM model, because the prediction error in
ne step may accumulate to a bigger one after multiple steps. To
ully verify its ability to represent the temperature dynamics of
he SOFC, in this section the LS-SVM model is operated in both
he two modes and the associated mean squared errors (MSEs)
n both modes are calculated.

Two sets of validation tests (see Table 4), which are, respec-
ively, called Validation A and Validation B in this paper, are
arried out to validate the LS-SVM model. Validation A is to
ompare the temperature dynamics of the LS-SVM model with
hat of the physical model under operating cases that are not
sed during training. The twelve validation cases in Validation

cover the main operating region of the LS-SVM model. In
alidation B, the LS-SVM model is tested on two different step

nputs (AR and J) and the corresponding responses are compared
ith those of the physical model.
The MSEs of each validation case are listed in Table 4. It is

ound that the LS-SVM model operating in the series–parallel
ode can reproduce the temperature dynamics of the SOFC with

igh accuracy for each validation case. As expected, the MSE in
he parallel mode is bigger than that in the series–parallel mode
or each case. The biggest MSE is 1.7255 for Case A12, which
ndicates that the maximum root mean squared error (RMSE) of
he temperature prediction is less than 1.5 K. This is still very sat-
sfactory for multi-step ahead prediction. Figs. 5–7 illustrate the
emperature responses of the LS-SVM model operating in the
arallel mode along with the comparison with those of the physi-
al model. The corresponding figures of the series–parallel mode
re omitted here due to similarity and their higher accuracy. It
an be seen from these figures that the temperature responses
f the LS-SVM model show good consistency with those of the

hysical model. All these validation results demonstrate that the
S-SVM model is capable of emulating the temperature dynam-

cs of the SOFC with good accuracy from only process input
ata.

MSE in series–parallel mode (K2) MSE in parallel mode (K2)

0.0067 0.3034
0.0009 0.0327
0.0069 0.4979
0.0097 0.5304
0.0015 0.1028
0.0060 0.5439
0.0004 0.0085
0.0042 0.1877
0.0067 0.3062
0.0006 0.0044
0.0061 0.2614
0.0294 1.7255

MSE in series–parallel mode (K2) MSE in parallel mode (K2)

2 0.0084 0.8152
0.0093 0.8024
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Fig. 5. Temperature responses of the LS-SVM model operating in a parallel mode and the physical model for Validation A: (a) Cases A1–A3; (b) Cases A4–A6; (c)
Cases A7–A9; (d) Cases A10–A12.

Fig. 6. Temperature responses of the LS-SVM model operating in a parallel
mode and the physical model for Case B1: (a) temperature responses; (b) step
signal of AR.

Fig. 7. Temperature responses of the LS-SVM model operating in a parallel
mode and the physical model for Case B2: (a) temperature responses; (b) step
signal of J.
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. Conclusions

A dynamic temperature model of an SOFC is developed in
his paper using least squares support vector machines (LS-
VMs). Issues concerning the development of the LS-SVM

emperature model, including variable selection, training set
onstruction and hyperparameter tuning, are discussed. Com-
rehensive validation tests have shown that the developed
S-SVM model is sufficiently accurate to emulate the tempera-

ure response of the SOFC over a relatively wide operating range
sing only process input information. The powerful ability of
he LS-SVM temperature model benefits from the approaches
f constructing the training set and tuning the hyperparameters
utomatically by GA, besides the modeling method itself. In
his study, the training data is generated with a physical model.
f sufficient data from a real plant is obtained, the optimal LS-
VM temperature model of SOFC can be built automatically in

he same way.
The LS-SVM temperature model presented in this paper is

seful for designing temperature control strategies. Control of
he SOFC using the LS-SVM model will be the focus of our
uture work.
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ppendix A. A physical model of DIR-SOFC

This model is developed based on conservation laws and
lectrochemical principles. Several assumptions are made as
ollows:

1) Three reactions (1)–(3) are included in the model.
2) The temperature of the solid part (including the PEN and

interconnect) and the molar fraction of each gas species
distribute uniformly over the SOFC, i.e. the SOFC is treated
as a well-stirred reactor [29,30].

3) The outlet stream temperature is equal to the solid tempera-
ture: Tout = Ts [29,30]. For simplicity, they are also denoted
by T in this paper.

4) The rate of energy accumulation in the gas phase is negli-
gible with respect to the solid part [29–31].

.1. Mass balance equations

The molar balance is applied to each gas species within the
OFC as follows:
Anode :
kppanVan

RT

dxi

dt
= N in

anx
in
i − Nout

an xout
i +

ξ∑
j=1

aijrj,

i ∈ {CH4, H2, CO, CO2, H2O}, (A.1)

o
o

U
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athode :
kppcaVca

RT

dxi

dt
= N in

cax
in
i − Nout

ca xout
i +

ξ∑
j=1

aijrj,

i ∈ {O2, N2}, (A.2)

here kp = 105 Pa bar−1, xi is the molar fraction of species i, aij

he stoichiometric coefficient of species i in reaction j, and rj the
ate of reaction j.

The reaction rates of (1)–(3) are calculated by the following
quations [25]:

1 = AJ

neF
, (A.3)

2 = ArkrpanxCH4 exp

(−Ea,r

RT

)
, (A.4)

3 = Ashkshpan(xCOxH2O − KshxCO2xH2 ), (A.5)

here the activation energy of reforming reaction
a,r = 82000 J mol−1, the equilibrium constant of WGS

eaction Ksh is obtained using the method of Ref. [32].
According to the continuity equations, the outlet total molar

ow rate is calculated by

out
an = N in

an + 2r2, Nout
ca = Nout

ca − r1

2
. (A.6)

.2. Energy balance equation

The energy conservation law is used for the whole SOFC and
he energy balance equation [25,31] is written as

sCs
p

dT s

dt
+

2∑
k=1

ζk∑
i=1

dnihi

dt

=
2∑

k=1

ζk∑
i=1

(
N in

i

∫ T in

T ref
cpi dT−Nout

i

∫ T out

T ref
cpi dT

)
−Qgen,

(A.7)

here ζ1 = 5 for CH4, H2, CO, CO2, H2O, ζ2 = 2 for O2, N2.
The first term on the left side of Eq. (A.7) is the rate of energy

ccumulation in the solid part of the SOFC and the second term,
hich can be neglected because of the fourth assumption, is

hat in the gases. The first term on the right side is the enthalpy
hange due to the input and output gas streams, the second term
s the heat generated by the three reactions and is calculated by

gen = �H1r1 + �H2r2 + �H3r3 − Pdc. (A.8)

he gas specific heat cpi in Eq. (A.7) is a function of temperature:

pi(T ) = b0 + b1T + b2T
2 + b3T

3. (A.9)

.3. Voltage model

The output voltage is calculated by subtracting three kinds

f overpotential losses, i.e. ohmic, activation and concentration
verpotentials, from the reversible voltage as Eq. (A.10).

= UN − ηohm − ηact − ηconc (A.10)
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The reversible voltage UN is calculated by the Nernst equa-
ion:

N = U0(T ) + RT

2F
ln

[
xH2x

0.5
O2

p0.5
ca

xH2O

]
, (A.11)

ith U0(T) = 1.2723–2.7645 × 10−4T, where U0(T) is the
eversible voltage at standard pressure [33].

The ohmic overpotential is calculated by the Ohm’s law as:

ohm = JRohm, (A.12)

here Rohm is the internal resistance of the cell and is calculated
rom the conductivity of the individual layers [6] by

ohm = τan

σan
+ τelec

σelec
+ τca

σca
. (A.13)

The activation overpotential is given by:

act = 2RT

neF
sinh−1

(
J

2j0,an

)
+ 2RT

neF
sinh−1

(
J

2j0,ca

)
,

(A.14)

here j0,an and j0,ca denote the anodic and cathodic exchange
urrent density, respectively, and are modeled in the following
orm [34]:

0,an = βan

(
panxH2

pref

)(
panxH2O

pref

)
exp

(
−Ea,an

RT

)
, (A.15)

0,ca = βca

(
pcaxO2

pref

)0.25

exp

(
−Ea,ca

RT

)
. (A.16)

The concentration overpotential is determined from

conc = −RT

2F
ln

(
1 − J

jL

)
, (A.17)

here jL is the limiting current density.
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